Search for gravitational waves associated with γ-ray bursts detected by the interplanetary network.

نویسندگان

  • J Aasi
  • B P Abbott
  • R Abbott
  • T Abbott
  • M R Abernathy
  • F Acernese
  • K Ackley
  • C Adams
  • T Adams
  • P Addesso
  • R X Adhikari
  • C Affeldt
  • M Agathos
  • N Aggarwal
  • O D Aguiar
  • P Ajith
  • A Alemic
  • B Allen
  • A Allocca
  • D Amariutei
  • M Andersen
  • R A Anderson
  • S B Anderson
  • W G Anderson
  • K Arai
  • M C Araya
  • C Arceneaux
  • J S Areeda
  • S Ast
  • S M Aston
  • P Astone
  • P Aufmuth
  • H Augustus
  • C Aulbert
  • B E Aylott
  • S Babak
  • P T Baker
  • G Ballardin
  • S W Ballmer
  • J C Barayoga
  • M Barbet
  • B C Barish
  • D Barker
  • F Barone
  • B Barr
  • L Barsotti
  • M Barsuglia
  • M A Barton
  • I Bartos
  • R Bassiri
  • A Basti
  • J C Batch
  • J Bauchrowitz
  • Th S Bauer
  • C Baune
  • V Bavigadda
  • B Behnke
  • M Bejger
  • M G Beker
  • C Belczynski
  • A S Bell
  • C Bell
  • G Bergmann
  • D Bersanetti
  • A Bertolini
  • J Betzwieser
  • I A Bilenko
  • G Billingsley
  • J Birch
  • S Biscans
  • M Bitossi
  • C Biwer
  • M A Bizouard
  • E Black
  • J K Blackburn
  • L Blackburn
  • D Blair
  • S Bloemen
  • O Bock
  • T P Bodiya
  • M Boer
  • G Bogaert
  • C Bogan
  • C Bond
  • F Bondu
  • L Bonelli
  • R Bonnand
  • R Bork
  • M Born
  • V Boschi
  • Sukanta Bose
  • L Bosi
  • C Bradaschia
  • P R Brady
  • V B Braginsky
  • M Branchesi
  • J E Brau
  • T Briant
  • D O Bridges
  • A Brillet
  • M Brinkmann
  • V Brisson
  • A F Brooks
  • D A Brown
  • D D Brown
  • F Brückner
  • S Buchman
  • A Buikema
  • T Bulik
  • H J Bulten
  • A Buonanno
  • R Burman
  • D Buskulic
  • C Buy
  • L Cadonati
  • G Cagnoli
  • J Calderón Bustillo
  • E Calloni
  • J B Camp
  • P Campsie
  • K C Cannon
  • B Canuel
  • J Cao
  • C D Capano
  • F Carbognani
  • L Carbone
  • S Caride
  • G Castaldi
  • S Caudill
  • M Cavaglià
  • F Cavalier
  • R Cavalieri
  • C Celerier
  • G Cella
  • C Cepeda
  • E Cesarini
  • R Chakraborty
  • T Chalermsongsak
  • S J Chamberlin
  • S Chao
  • P Charlton
  • E Chassande-Mottin
  • X Chen
  • Y Chen
  • A Chincarini
  • A Chiummo
  • H S Cho
  • M Cho
  • J H Chow
  • N Christensen
  • Q Chu
  • S S Y Chua
  • S Chung
  • G Ciani
  • F Clara
  • D E Clark
  • J A Clark
  • J H Clayton
  • F Cleva
  • E Coccia
  • P-F Cohadon
  • A Colla
  • C Collette
  • M Colombini
  • L Cominsky
  • M Constancio
  • A Conte
  • D Cook
  • T R Corbitt
  • N Cornish
  • A Corsi
  • C A Costa
  • M W Coughlin
  • J-P Coulon
  • S Countryman
  • P Couvares
  • D M Coward
  • M J Cowart
  • D C Coyne
  • R Coyne
  • K Craig
  • J D E Creighton
  • R P Croce
  • S G Crowder
  • A Cumming
  • L Cunningham
  • E Cuoco
  • C Cutler
  • K Dahl
  • T Dal Canton
  • M Damjanic
  • S L Danilishin
  • S D'Antonio
  • K Danzmann
  • V Dattilo
  • H Daveloza
  • M Davier
  • G S Davies
  • E J Daw
  • R Day
  • T Dayanga
  • D DeBra
  • G Debreczeni
  • J Degallaix
  • S Deléglise
  • W Del Pozzo
  • T Denker
  • T Dent
  • H Dereli
  • V Dergachev
  • R De Rosa
  • R T DeRosa
  • R DeSalvo
  • S Dhurandhar
  • M Díaz
  • J Dickson
  • L Di Fiore
  • A Di Lieto
  • I Di Palma
  • A Di Virgilio
  • V Dolique
  • E Dominguez
  • F Donovan
  • K L Dooley
  • S Doravari
  • R Douglas
  • T P Downes
  • M Drago
  • R W P Drever
  • J C Driggers
  • Z Du
  • M Ducrot
  • S Dwyer
  • T Eberle
  • T Edo
  • M Edwards
  • A Effler
  • H-B Eggenstein
  • P Ehrens
  • J Eichholz
  • S S Eikenberry
  • G Endrőczi
  • R Essick
  • T Etzel
  • M Evans
  • T Evans
  • M Factourovich
  • V Fafone
  • S Fairhurst
  • X Fan
  • Q Fang
  • S Farinon
  • B Farr
  • W M Farr
  • M Favata
  • D Fazi
  • H Fehrmann
  • M M Fejer
  • D Feldbaum
  • F Feroz
  • I Ferrante
  • E C Ferreira
  • F Ferrini
  • F Fidecaro
  • L S Finn
  • I Fiori
  • R P Fisher
  • R Flaminio
  • J-D Fournier
  • S Franco
  • S Frasca
  • F Frasconi
  • M Frede
  • Z Frei
  • A Freise
  • R Frey
  • T T Fricke
  • P Fritschel
  • V V Frolov
  • P Fulda
  • M Fyffe
  • J R Gair
  • L Gammaitoni
  • S Gaonkar
  • F Garufi
  • N Gehrels
  • G Gemme
  • B Gendre
  • E Genin
  • A Gennai
  • S Ghosh
  • J A Giaime
  • K D Giardina
  • A Giazotto
  • J Gleason
  • E Goetz
  • R Goetz
  • L Gondan
  • G González
  • N Gordon
  • M L Gorodetsky
  • S Gossan
  • S Goßler
  • R Gouaty
  • C Gräf
  • P B Graff
  • M Granata
  • A Grant
  • S Gras
  • C Gray
  • R J S Greenhalgh
  • A M Gretarsson
  • P Groot
  • H Grote
  • K Grover
  • S Grunewald
  • G M Guidi
  • C J Guido
  • K Gushwa
  • E K Gustafson
  • R Gustafson
  • J Ha
  • E D Hall
  • W Hamilton
  • D Hammer
  • G Hammond
  • M Hanke
  • J Hanks
  • C Hanna
  • M D Hannam
  • J Hanson
  • J Harms
  • G M Harry
  • I W Harry
  • E D Harstad
  • M Hart
  • M T Hartman
  • C-J Haster
  • K Haughian
  • A Heidmann
  • M Heintze
  • H Heitmann
  • P Hello
  • G Hemming
  • M Hendry
  • I S Heng
  • A W Heptonstall
  • M Heurs
  • M Hewitson
  • S Hild
  • D Hoak
  • K A Hodge
  • D Hofman
  • K Holt
  • P Hopkins
  • T Horrom
  • D Hoske
  • D J Hosken
  • J Hough
  • E J Howell
  • Y Hu
  • E Huerta
  • B Hughey
  • S Husa
  • S H Huttner
  • M Huynh
  • T Huynh-Dinh
  • A Idrisy
  • D R Ingram
  • R Inta
  • G Islas
  • T Isogai
  • A Ivanov
  • B R Iyer
  • K Izumi
  • M Jacobson
  • H Jang
  • P Jaranowski
  • Y Ji
  • F Jiménez-Forteza
  • W W Johnson
  • D I Jones
  • R Jones
  • R J G Jonker
  • L Ju
  • K Haris
  • P Kalmus
  • V Kalogera
  • S Kandhasamy
  • G Kang
  • J B Kanner
  • J Karlen
  • M Kasprzack
  • E Katsavounidis
  • W Katzman
  • H Kaufer
  • S Kaufer
  • T Kaur
  • K Kawabe
  • F Kawazoe
  • F Kéfélian
  • G M Keiser
  • D Keitel
  • D B Kelley
  • W Kells
  • D G Keppel
  • A Khalaidovski
  • F Y Khalili
  • E A Khazanov
  • C Kim
  • K Kim
  • N G Kim
  • N Kim
  • S Kim
  • Y-M Kim
  • E J King
  • P J King
  • D L Kinzel
  • J S Kissel
  • S Klimenko
  • J Kline
  • S Koehlenbeck
  • K Kokeyama
  • V Kondrashov
  • S Koranda
  • W Z Korth
  • I Kowalska
  • D B Kozak
  • V Kringel
  • B Krishnan
  • A Królak
  • G Kuehn
  • A Kumar
  • D Nanda Kumar
  • P Kumar
  • R Kumar
  • L Kuo
  • A Kutynia
  • P K Lam
  • M Landry
  • B Lantz
  • S Larson
  • P D Lasky
  • A Lazzarini
  • C Lazzaro
  • P Leaci
  • S Leavey
  • E O Lebigot
  • C H Lee
  • H K Lee
  • H M Lee
  • J Lee
  • P J Lee
  • M Leonardi
  • J R Leong
  • I Leonor
  • A Le Roux
  • N Leroy
  • N Letendre
  • Y Levin
  • B Levine
  • J Lewis
  • T G F Li
  • K Libbrecht
  • A Libson
  • A C Lin
  • T B Littenberg
  • N A Lockerbie
  • V Lockett
  • D Lodhia
  • K Loew
  • J Logue
  • A L Lombardi
  • E Lopez
  • M Lorenzini
  • V Loriette
  • M Lormand
  • G Losurdo
  • J Lough
  • M J Lubinski
  • H Lück
  • A P Lundgren
  • Y Ma
  • E P Macdonald
  • T MacDonald
  • B Machenschalk
  • M MacInnis
  • D M Macleod
  • F Magaña-Sandoval
  • R Magee
  • M Mageswaran
  • C Maglione
  • K Mailand
  • E Majorana
  • I Maksimovic
  • V Malvezzi
  • N Man
  • G M Manca
  • I Mandel
  • V Mandic
چکیده

We present the results of a search for gravitational waves associated with 223 γ-ray bursts (GRBs) detected by the InterPlanetary Network (IPN) in 2005-2010 during LIGO's fifth and sixth science runs and Virgo's first, second, and third science runs. The IPN satellites provide accurate times of the bursts and sky localizations that vary significantly from degree scale to hundreds of square degrees. We search for both a well-modeled binary coalescence signal, the favored progenitor model for short GRBs, and for generic, unmodeled gravitational wave bursts. Both searches use the event time and sky localization to improve the gravitational wave search sensitivity as compared to corresponding all-time, all-sky searches. We find no evidence of a gravitational wave signal associated with any of the IPN GRBs in the sample, nor do we find evidence for a population of weak gravitational wave signals associated with the GRBs. For all IPN-detected GRBs, for which a sufficient duration of quality gravitational wave data are available, we place lower bounds on the distance to the source in accordance with an optimistic assumption of gravitational wave emission energy of 10(-2)M⊙c(2) at 150 Hz, and find a median of 13 Mpc. For the 27 short-hard GRBs we place 90% confidence exclusion distances to two source models: a binary neutron star coalescence, with a median distance of 12 Mpc, or the coalescence of a neutron star and black hole, with a median distance of 22 Mpc. Finally, we combine this search with previously published results to provide a population statement for GRB searches in first-generation LIGO and Virgo gravitational wave detectors and a resulting examination of prospects for the advanced gravitational wave detectors.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Search for Gravitational Waves Associated with Gamma-ray Bursts during Ligo

We present the results of a search for gravitational waves associated with 154 gamma-ray bursts (GRBs) that were detected by satellite-based gamma-ray experiments in 2009-2010, during the sixth LIGO science run and the second and third Virgo science runs. We perform two distinct searches: a modeled search for coalescences of either two neutron stars or a neutron star and black hole; and a searc...

متن کامل

Gravitational Waves and γ-Ray Bursts

Coalescing binaries in distant galaxies are one of the most promising sources of gravitational waves detectable by the LIGO project.[1−5] They are also a copious source of neutrinos, however these neutrino pulses are far too weak to be detected on earth. Several years ago Eichler et al. [6] suggested that they are also sources of γ-ray bursts (GRBs). Recently it was found that GRBs are likely t...

متن کامل

Gravitational wave: gamma-ray burst connections

After 35 years of experimental research, we are rapidly approaching the point at which gravitational waves (GWs) from astrophysical sources may be directly detected by the long-baseline detectors LIGO (USA), GEO 600 (Germany/UK), VIRGO (Italy/France) and TAMA 300 (Japan), which are now in or coming into operation. A promising source of GWs is the coalescence of compact binary systems, events wh...

متن کامل

Gravitational wave: gamma-ray burst connections.

After 35 years of experimental research, we are rapidly approaching the point at which gravitational waves (GWs) from astrophysical sources may be directly detected by the long-baseline detectors LIGO (USA), GEO 600 (Germany/UK), VIRGO (Italy/France) and TAMA 300 (Japan), which are now in or coming into operation.A promising source of GWs is the coalescence of compact binary systems, events whi...

متن کامل

Search for Gravitational Waves Associated with Gamma-Ray Bursts during the First Advanced LIGO Observing Run and Implications for the Origin of GRB 150906B

We present the results of the search for gravitational waves (GWs) associated with γ-ray bursts detected during the first observing run of the Advanced Laser Interferometer Gravitational-Wave Observatory (LIGO). We find no evidence of a GW signal for any of the 41 γ-ray bursts for which LIGO data are available with sufficient duration. For all γ-ray bursts, we place lower bounds on the distance...

متن کامل

Gravitational wave: gamma-ray burst connections

After 35 years of experimental research, we are rapidly approaching the point at which gravitational waves (GWs) from astrophysical sources may be directly detected by the long-baseline detectors LIGO (USA), GEO 600 (Germany/UK), VIRGO (Italy/France) and TAMA 300 (Japan), which are now in or coming into operation. A promising source of GWs is the coalescence of compact binary systems, events wh...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Physical review letters

دوره 113 1  شماره 

صفحات  -

تاریخ انتشار 2014